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THE WAR OF ATTRITION IN CONTINUBUS TIME 

WITH COMPLETE INFORMATION* 


1. INTRODUCTION 

In this paper, we present a general analysis of the War of Attrition in continu- 
ous time with complete information. In this game, each of two players must 
choose a time at which he plans to concede in the event that the other player has 
not already conceded. The return to conceding decreases with time, but, at any 
time, a player earns a higher return if the other concedes first. The game was 
introduced by Maynard Smith (1974) to study the evolutionary stability of cer- 
tain patterns of behavior in animal conflicts. It has subsequently been applied by 
economists to a variety of economic conflicts such as price wars (e.g., Fudenberg 
and Tirole 1986, Ghemawat and Nalebuff 1985, Kreps and Wilson 1982) and 
bargaining (Ordover and Rubinstein 1985, Osborne 1985)' 

Most authors have assumed specific functional forms for the payoffs. The only 
general analysis of the equilibria of this game in continuous time with complete 
information is by Bishop and Cannings (1978). They study a general symmetric 
game, but restrict the equilibrium analysis to symmetric Nash equilibria which 
satisfy a certain stability p r ~ p e r t y . ~  This paper generalizes their model to allow 
for asymmetric return functions and arbitrary payoffs in the event that neither 
player ever concedes. We provide a complete characterization of the Nash equi- 
librium outcomes. 

The paper is organized as follows. In Section 2, we introduce the game and 
present the assumptions which define the War of Attrition. In Section 3, we state 
the main theorems and heuristically describe the logic behind the proofs. In 
Section 4, we relate our analysis to some of the applications which have appeared 
in the economics literature. Section 5 contains the proofs of the theorems present- 
ed in Section 3. Section 6 concludes with a brief discussion of how the analysis 
changes when time is made discrete. 

" Manuscript received December 1986; revised August 1987. 
' Support from the National Science Foundation, the Alfred P. Sloan Foundation, and the C. V. 

Center for Applied Economics is gratefully acknowledged. 
Most of these models incorporate some degree of incomplete information. The method of analy- 

sis is similar, but the set of eq~~il ibria  is sometimes substantially reduced. 
The equilibrium concept is known as evolutionary stable strategies (ESS). Following Selton 

(1980), a strategy r is said to be evol~~tionary stable if (i) r is a best reply to itself and (ii) for any 
alternative best reply r' to r ,  r is a better reply to r' than r' is to itself. 
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2. THE GAME 

Two players. n and b, must decide when to make a single move at  some time t 
between 0 and I." The payoffs are determined as soon as one player moves. In  
what follows, x refers to an  arbitrary player and to the other player. If player a 
moves first at some time t ,  he is called the leader and earns a return of L,(t). If the 
other player moves first at  time t ,  then player x is called the f o l l o ~ ~ e r  and earns a 
return of F,(t). If both players move simultaneously at  time t ,  the return to player 
Y is Sz( t ) .  

In the strategic forin of the game. a pure strategy for player a is a time t ,  E 

[O, I ]  at which he plans to niove given that neither player moves before that time. 
Given a strategy pair (t,, 17,) E [0, 11 x [0, 11, the payoff to player a is then 
defined as follows: 

2 1 4sstrr~ptlorls on the? Pcrjoff Fzrnctlonv. Our  first assumption guarantees 
that the payoff' filnctions are continuous everywhere but on the diagonal. 

(A1)  L, and F, are continuous functions on [0, 

Gaines \vith this structure are generally called "noisy" games of timing6 
Notice that we impose no differentiability conditions on either of these functions. 
Our  next assumption characterizes the War of Attrition. 

(.42) (1)  F,(t) > L,(t) for t c (0. 1); 

(11) ~ , ( t )> S,(t) for t E 10, 1): 

(iii) L,(t) is strictly decreasing for t E [O, 1). 

Condition (i) requires that the return to following at  any time t > 0 strictly 
exceed the return to leading at  time t .  We d o  not rule out the possibility that 

'This is just a normali7ation. A game Lvith an  infinite horizon can be converted into this frame- 
work h)  a ch'lngc of kariable such as  r = ,- ( 1  + :). where - E [O, z).See Section 4 ons i ~ ~ l p l e  the 
appllcntions of this mndcl for Inore discussion on  this point. 
' I: is not ttqsentlal that F z ( l )and L , ( I )be defined since the only return which can be realized a t  

time I is S,(l) .  Defining Lz(t)t o  be continuous a t  I merely allows us t o  identify lim,., L,(t) with L,(l). 
Similarl! for F, 

" The _games are  called " n o ~ s ) "  bccausc the payoff to the follower depends only on  when the other 
player moles .  This I-eflects the assumption that a player who plans to  Lvalt until time t t o  move does 
not hake to roiiriliit himself to moving ~ ~ n t i l  he has observed the liistor) of the game up  to time t. 

ConsequentI>. ~f the other player moves before time r ,  tlie first player can react opt~mal ly .  indepen- 
dentl) of \ \hat  he had planned to d o  had the other player not moved a t  time 1 .  A "silent" game of 
timlng is one In which each player must cornmit himself t o  a time a t  which he will move independent- 
ly of tlie action of tlie other at the outset of the game. Silent games of timing have been also been 
irred in econornic rnodels (r.g.  Reingan~rm 1981a. 1981b). 
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L,(O) = F,(O) or  the possibility that F,(l) = L,(l). Condition (ii), however, requires 
that the return to following strictly exceed the return to tying at all times less 
than 1.  Combined with condition (iii), these conditions imply that, at any time 
t < 1, each player prefers to wait if the other player plans to move but, if forced 
to move first, would prefer to move sooner than later. Note, however, that, since 
S ,  is not necessarily continuous, our assumptions impose no restrictions on the 
relation of S,(1) to either L,(1) or F,(l). Consequently, S,(1) may reflect the 
equilibrium payoff of arqjl continuation game which is played whenever both 
players wait until time 1. 

Although not necessary for our analysis, it will also be convenient to ignore the 
special case in which return to leading at  time O is exactly equal to the terminal 
return. 

In Figure 1, we have illustrated three possible relations between the return 
functions. In each case, the return functions are normalized so that S,(1) = 0. As 
required by Assumption A2, in each case the value of F, lies above L, over the 
open interval (0, 1) with L, strictly decreasing throughout. Figure l(a) illustrates 
the case in which both the return to leading and the return to following converge 
to 0 as time approaches 1. Figure l(b) illustrates the case where the return from 
leading is bounded above the return at time 1. Figure l(c) illustrates the case 
where the return to leading actually falls below the return at  time 1 before time 1 
is reached. We will return to each of these examples again in our discussion of the 
applications. Although not illustrated. Assumption A2 requires that S, must also 
lie below F ,  over the interval (0, 1). However, it is not necessary that F, be 
decreasing. 

2.2. Equilibriur?~. It is important for our results to permit agents to rando- 
mize across pure strategies. A rizised str.ategjl for player x is a probability distri- 
bution function G, on [0, 11.' If we extend the domain of the payoff functions to 
the set of all pairs of mixed strategies in the obvious way, then a strategy combi- 
nation (G:, G:) is an eqtlilibriilt~z if Pa((?:, GF) 2 Pa(G,, GF) for all mixed strate- 
gies G, ,J  = 0,  b a n d  p # x. 

For the remainder of the paper, (G,, G,) will refer to an equilibrium combi- 
nation, and q,(t) will denote the probability with which player x moves at exactly 
time t .  We will repeatedly use the fact that if (G,. G,) is a pair of equilibrium 
distributions, then P,(t, Gp) = up,^^,,,^ P,(v, Go) for any t in the support of G,. 

' By a probability distribution on  [ t ,  I], we mean any right-continuous nondecreasing function G 
from ( - x. I:] to LO. 11 with G(r) = 0 for t i0 and  G(1) = 1. Throughout  this paper, we will adopt  
the convention that 

Tha t  is. the integral does not include a mass point a t  time r ,  
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3. T J I E  M 4 I U  IHEOREMS 

In this section we present the main theorems in our analysis and describe the 
logic behind their proofs. In OLIS analysis. we distinguish between two kinds of 
equilibria. An equilibrium is degencv-ate if either one of the players moves at  time 
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O or both wait until the terminal time. There is  always at least one equilibrium o f  
this type. In addition, there is sometimes a continuum o f  rqondegetzerate equilibria. 
These are equilibria in which both players move over an interval (0,  t )  according 
to a strictly increasing, continuous distribution, after which both wait until the 
terminal time. The indeterminacy comes at the beginning o f  the game where the 
only constraint is  that only one player may move immediately with positive 
probability. 

3.1. Degeiaerlrte Eq~tibrin. Theorem 1 characterizes the possible degenerate 
equilibrium outcomes. 

(a)  There is an equilibriufn ill wlziclz q,( l )  = q,(l) = 1 i f  a d  only if L,(O) < 
S,(l)f o r  r = Ll, b. 

( b )  Tllere is an eqrlilihriuin witll qz(0)= 1 a~ ldqo(0)= 0 if a~ad onlj. if,for some 
r. 
( i )  Lz(0)2 S,(I) or 

( i i )  Jor sonw t E (0,  l ) ,L,(O) 2 F,(t). 

At least one o f  the equilibriun~ outcomes described in Theorem 1 always exists. 
I f  the return to each player at time 1 i s  higher than his return from leading at 
time 0,  then there i s  an equilibrium in which both players wait until time 1 with 
probability 1. On  the other hand, i f  his return to leading at time 0 exceeds his 
terminal return. then there i s  an equilibrium in which player r moves immedi- 
ately. Moreover, both types o f  equilibrium may exist i f  the terminal return o f  
some player a exceeds his return to leading at time 0 which in turn exceeds his 
return to following at some time later time t .  In this case, the equilibrium out- 
come in which player r moves immediately is  supported by a threat by player h 
to move at time r.8 

In any case. notice that only one player can move immediately with probability 
1 .  The reason is  that Assumption A2 implies that the other player can do better 
by waiting to obtain the return to following. However, i f  player r is certain to 
move immecliately with probability 1, then there is generally a large class o f  
equilibrium strategies for player P which support this outcome. The only re-
striction on his strategy i s  that it be an optimal response for player % 1s to move 
immediately. As we note below, however. the imposition o f  subgame perfection 
does eliminate some o f  this indeterminacy. 

3.2. Nor~degener~lteEq~rilibria. As we demonstrate in Section 4, any mass 
points In the equil~briun~ strategies must be concentrated at either the beginning 
or the end o f  the game. Furthermore, unless the equilibrium is degenerate, any 
gaps in the support o f  the equilbrium distributions must be the same for both 
players and must extend to the terminal time. The condition that each player be 

9 s \\e argue belo&. ho\\ever. this equilibrium is not subgame perfect. 
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indift'erent to moving at any time in the interior of the support then defines a pair 
of integral equations which determine the equilibrium strategies up to somc "end 
point" conditions. The requirements for these endpoint conditions provide the 
necessary and sufficient for the existence of a nondegenerate equilibrium. 

To  state these conditions, wc require some additional notation. Define 

Note that Assumption ( A l ) implies that Ii,(s. t) is well defined everywhere except 
possibl~ 'it 0 and 1 Define Ip(O, 0 )  = liin,!, I&O, r )  and I p ( l .  1 )  = limtA,Ip( t , I ) . ~  

TI~EORFV2. T/ze;.e i.s ( r i z  u,ir/z qz(0) + q,( l)  < 1 for x =eq~iilibi~i~il~z a. h if'aizd 
0 ? 1 / ) ~i f  : 

(a)  I<,(O,0 )  = I,(O, 0 )  = 1 : tlr1d 
(b)  Oizr of'rhe,jbllo\vir~y c.orzrli/ior~sis strtisfied: 

(i) L,,(t*)- S, , ( l )= L,( t:$)- S,(l),fior sorne t* E (0. I ] :  
(ii) I[,(l. 1 )  = 1&1. 1 )  = 0 :  

( i i i )  I,( 1 .  1 )  = 0 irrirl L,(1 ) 2 S, ( l )  for. sorne x .  

Before explaining thcse conditions, we will proceed with a characterization of 
the nondegenerate equilibria they imply. 

T H E ~ I < E ~ ~( 6 , .G,) is trri ei~uilihriui~z\i,itll q,(0) + q,( l)  < l .for a = ( I ,  h i fai~cl  3. 
oril! i f r / l e  c.orlditioizs of Tlieoiri~z2 are satisfied crizcl: 

(a) ( q , ( O ) .  ql,(0))E 10. 1 )  x 10, 1 )  trrd q,(O)q,(O) = 0 .  
(b) Tilcri. 1 5  i l  t ,  E (0. 11 ~ 1 1 ~ 1 ~  = (1 .  b. either tlltrt. for P 

(1 )  L / J ( f1 )  = Si ,( l ) ,  or 
(11) t = 1 .  ~llltl 

(3.1) G,(t) = 1 [l - il,(O)]I,(O. t )  for r E [O. t , ) .  arzd-

Coi1sidt.i first the statement of Theorem 3. Condition (a) is an  "initial" con-
dition which states that at most one player can move with positive probability at 
time 0 .  Since. by Assumption (A2). the return to follou~ing exceeds the return to 
tying at  tiiiie 0.  i t  always pays at least one player to wait an  instant. Condition (b) 
gives the integral equation which defines the equilibrium strategies after time 0.  
Both players move according to a continuous increasing probability distribution 
up to sorue time t ,  after which they wait until the end of the game. The require- 
ment that player a be willing to move at any point in the interval (0,  t , )  implies 

" Note that 1,JO. O)  and / , ( I .  l i  can only take on the values O and I .  Furthermore, if F,(O) > L,(O), 
then Il1(O. Oi = 1 .  and ~f F , ( 1 )  > L x ( l ) .then 1 ) ( 1 .  1 )  = 1 .  
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equation (3.1). (If L, is differentiable, it is the solution to the differential equation, 
Gb(t)CI - G,(t)l = Lh(t).!CF,(t)- G,(t)l.) 

Consider next the statement of Theorem 2. Condition (a) is necessary and 
sufficient for equation (3.1) to define a strictly increasing function. It will be 
satisfied whenever the return to following at time 0 strictly exceeds the return to 
following. Condition (b) gives the three possibilities for the strategies defined by 
Condition (b) of Theorem 3 to be best responses. Condition (b)(i) corresponds to 
Condition (b)(i) of Theorem 3. In this case. there is a time at which both players 
earn returns to leading that equal their terminal returns. Setting t ,  equal to this 
time then makes both players indifferent between moving at any time in the 
interval (0. t , )  and waiting until the end of the game. 

Conditions (b)(ii) and (b)(iii) correspond to Condition (b)(ii) of Theorem 3. In 
this case each player p moves according to the distribution function G,, through-
out the game. This strategy pair forms a pair of best responses if and only if one 
of two conditions is satisfied. One possibility is for hotlz players to eventually 
move with probability 1 making the terminal payoff to other irrelevant. The 
other possibility is for only player x to eventually move with probability one. In 
this case, the terminal .return to player p is irrelevant, but. for the strategy of 
player x to be optimal. he must not prefer to wait until the end of the game. 
Consequently, we require that L,(1) 2 S,(l). Condition (b) then follows upon 
observing that eq~lation (3.1) implies that limtTl G,(t) = 1 if and only if 
Iz(l .  1) = 0. 

Notice that both Conditions (b)(i) and (b)(ii) might be satisfied simultaneously. 
In thesc cases, there are two one parameter families of equilibria which differ 
according to whether there is a gap in the supports of the equilibrium distri- 
butions. 

3.3. Suhgarne Pei:fectiorl. Many of the applications of the war of attrition 
arise in situations in which the players cannot coninlit themselves to the time at 
which they plan to move at the beginning of the game. In these cases. a decision 
to move at time t is actually a decision to move,first at  time t, given that neither 
player has already moved by that time. For these games, it may be desirable to 
refine the equilibrium concept to incorporate the implications of subgame per- 
fection. 

T o  use this concept. however, we must first extend the concept of a strategy to 
specify the plans of the player upon reaching any time t. As defined in Section 2, 
the game is in a reduced normal form in that the strategies d o  not necessarily 
specify the plans of a player who deviates from his intended action. If the player 
does not plan to move before time t with probability 1. then we may use Bayes 
rule to derive the strategy of the player at time r .  Otherwise, at every time t for 
which Bayes does not determine the plan of the player, we must specify a new 
distribution function stating the strategy of the player for the subgame starting at  
that time. 111 the interest of space, we will avoid the details of a precise specifi- 
cation of this larger strategy space and present only heuristic arguments. 

Note first that equation (3.1) implies that, for any t < 1, there is a positive 
probability that it will be reached in any nondegenerate equilibrium. It follows 
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immediately, therefore, that every nondegenerate equilibrium is subgame perfect. 
For the same reason, any degenerate equilibrium in which both players wait until 
time 1 is also subgame perfect. Consequently, the only cases in which subgame 
perfection may be restrictive is when one of the players moves immediately with 
probability 1. In these cases, subgame perfection not only eliminates some equi- 
libria, but, as Fudenberg et al. and Ghemawat and Nalebuff have shown, it may 
even eliminate degenerate equilibrium outcomes as well. 

A general characterization of the subgame perfect equilibrium may be stated as 
follows. 

THEOREM4. There is a subgame perfi?ct equilibrium in which q,(O) = 1 if and 
0171)~ 

(a) either condition (b) of Theorem 2 is satisjied; or 
(b) (i)  L,(O) > S,(l); and 

(ii) L,(t) < S,(l) implies Lp(t) < Sp(l) for all t E [O, 1). 

To  understand these conditions, we note that there are two ways in which a 
degenerate outcome might be made subgame perfect. The first is for the players 
to adopt a nondegenerate equilibrium if the game reaches time t > 0. This is 
possible if and only if condition (b) of Theorem 2 is satisfied. The other possibility 
is for player a to plan to move with probability 1 upon reaching any time t up to 
the time t* where his return to leading equals his terminal return. Thereafter, he 
waits until the terminal time with probability 1. In response, player P must adopt 
a strategy which makes this optimal. Here, two conditions must be satisfied. First, 
player /lmust not earn a higher return from leading after time t* than his 
terminal return. Otherwise, he will move with probability 1 upon reaching any 
time after t* which will lead player a to wait at time t*. Inducting on this 
argument then leads to an unravelling of the equilibrium. This argument yields 
condition (b)(ii). Second, since player P earns a lower return from leading after t* 
than by waiting until time 1, he will never move after t* either. Consequently, the 
return to player cc from leading at time t* must be no less than his terminal 
return. Assumption (A2) then implies condition (b)(i). 

Notice that, in the absence of a nondegenerate equilibrium for any subgame, 
Theorem 4 implies that it is subgame perfect for some player to move immedi- 
ately only if and only if L,(O) > S,(l) for some player a. Thus, in this case, the two 
types of degenerate equilibrium outcomes are mutually exclusive. Either one of 
the players moves with probability 1 at time 0 or both players wait until time 1. 

We should point out that in working in continuous time, there are some 
additional subtleties that do not arise in the discrete time analogues. The prob- 
lem is that in continuous time a player may move with zero probability at any 
point in an interval, but nevertheless move with positive probability over the 
entire interval. Consider, for instance, a game in which, upon reaching any period 
t, the unique subgame perfect outcome is for player a to move immediately with 
probability 1. Since it cannot be optimal for player a to move at any time at 
which player cc plans to move with probability 1, player P cannot plan to move 
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with positive probability at any time before the terminal time. If time is discrete, 
this implies that he waits until the end with probability 1. If time is continuous, 
however, this restriction only eliminates strategies with mass points. It does not 
rule out a strictly increasing, continuous distribution function which rises a t  rate 
sufficiently low so that player cr always prefers to move immediately upon reach- 
ing any time t .  Consequently, we are left with an infinity of subgame perfect 
equilibria. 

4. NONDEGENERATE EQUILIBRIA IN ECONOMIC APPLICATIONS 

In any interesting application of this game, the return to leading a t  time 0 will 
exceed his terminal return for a t  least one of the players. In this case, there is 
always a subgame perfect degenerate equilibrium in which one of the players 
moves immediately. The focus of most of the attention in the literature, however, 
has been on the nondegenerate equilibria.'' In this section, we discuss the kinds 
of economic applications for which nondegenerate equilibria are likely to exist. 

Ignoring for the moment, the integral condition at time 0, the class of econom- 
ic applications for which nondegenerate equilibria exist can roughly be divided 
into those which satisfy Condition (b)(i) of Theorem 2 and those which satisfy 
Condition (b)(ii). One important class of applications which generally satisfy both 
conditions are those which require an infinite horizon. Suppose, for instance, that 
all of the return functions decline at an exponential rate 6. Then, if we transform 
time according to the formula z = t/[t + 11, simple calculations reveal that not 
only is F,(1) = L,(1) = S,(1) = 0 as in Figure l(a), but Ip(l ,  1) = 0 as well. In this 
case, there is a one parameter family of equilibria in which both players move 
over the entire interval according to a continuous distribution function. 

Condition (b)(ii) may also be satisfied for some applications with a finite hor- 
izon if the net return to following depends on the amount of time remaining in 
the game. In their continuous time version of the "chain store" paradox, for 
example, Kreps and Wilson (1982) assume that a contest for a market between 
two firms takes place over a predetermined interval (0, 1). They also assume that 
the benefit from following over leading is proportional to 1-t and that the cost of 
leading (in their case leaving the market) is proportional to t. Simple calculations 
again reveal that Ip(l ,  1) = 0. Consequently, under complete information, their 
model possesses a one parameter family of nondegenerate equilibria in which one 
of the players is certain to concede by time 1." 

For most economic applications which require a finite horizon, however, the 

'O There are exceptions. Kornhauser, Rubinstein, and Wilson (1987), for example, argue for select- 
ing the degenerate equilibria. 
" This game may also possess another family of nondegenerate equilibria. If the firms were to play 

a sequence of tz  such contests (see Fudenberg and Kreps 1985). the terminal payoff to each firm at the 
end of the kth contest would represent its equilibrium payoff from playing the remaining PI-k contests. 
If this is nonzero and returns are symmetric, the family of nondegenerate equilibria described in 
condition (i) of Theorem 2 also exists. Notice that in this equilibrium, the behavior of the firms in the 
kth contest depends on their behavior in subsequent contests through the value of the terminal 
payoffs. 
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return to following stays bounded above the return to leading. Consequently, 
neither Condition (b)(ii) nor (b)(iii) is satisfied, and the only possibility for es- 
tablishing the existence of an  equilibrium is to satisfy Condition (b)(i). There are 
two reasons why this condition might not be satisfied. The first is that the return 
to leading at any finite time may strictly exceed the terminal return. For  instance, 
in the oil exploration example studied by Wilson (1983), if the firm has not drilled 
its lease by a certain time, it loses the lease. In this case, there is no nondegenerate 
equilibrium because truncating the horizon introduces a downward discontinuity 
in the payoffs at  time 1 as in Figure l(b). (See Hendricks and Wilson 1985 for a 
detailed discussion of this issue.) 

The second reason nondegenerate equilibria may not exist is that, even in 
games where the return to leading eventually falls below the terminal return as in 
Figure l(c), the return to leading must equal the terminal return at exac t l j~the 
scrtne time ,for both players. This property is likely to hold only for symmetric 
games. Consequently, unless there is a special reason to assume that returns are 
symmetric, such as in the biology models, we should not expect to find a nonde- 
generate equilibrium. Two economic applications where this result is of interest is 
in the patent race model of Fudenberg et al. (1983) and the exit model by 
Ghemawat and Nalebuff (1985). In both of these models, returns are assumed to 
be asymmetric and, as a result, the nondegenerate equilibria of Theorem 2 are 
eliminated. 

Finally, consider the implications of the integral condition at  time 0. In most 
applications, the return to following strictly exceeds the return to leading at time 
0, so that this condition is satisfied. In some cases, however, particularly where 
the war of attrition is a subgame of a larger game, this condition is less plausible. 
For example, Hendricks (1987) studies a model of adoption of a new technology 
in which there are both first and second-mover advantages. Each firm must 
choose a time at which to adopt. The return functions are continuous and have 
the property that, initially the returns to leading are increasing, and exceed the 
returns to following. During this period, first-mover advantages dominate the 
second-mover advantages. and each firm has an  incentive to preempt. Eventually, 
l~owever. the return to leading decreases, falling below the return to following, so 
that the second-mover advantage dominates. Consequently, if L, is decreasing at 
the point of intersection of F, and L,, then Condition (a) of Theorem 2 is not 
satisfied and hence there are no nondegenerate equilibria for this subgame. 

5. THE TECHNICAL ANALYSIS 

We begin by establishing the relation between the supports of the strategies of 
the two players. 

LEMMA1. Silppose G,(t,) = G,(t2) < 1for t ,  > t,. Then Gg(tl) = Go(t2+ 6)for 
sorlle 6 > 0. 

PROOF. Suppose G,(t,) = G,(t2) < 1 for 1, < t, and choose c E (0, 1, - 1,). 
Then. for any t E (t, + c, t,], it follows from Assumption A2 that player prefers 
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to move at  time t ,  + t: than to move at  t since there is no  chance that player cc 
will move in the intervening interval: 

Furthermore, for any E ,  > 0 sufficiently small, right-continuity of G, implies that 
there is an  arbitrarily small 6 > 0 such that G,(t, + 6) - G,(t,) < E,. It then 
follows from Assumptions A1 and A2 that, for t E (t,, t 2  + 6), 

Letting c - 0, \ve may then conclude that for any t E (t,, t, + 61, there is an  
earlier time D E (t,, t) at which player prefers to move. Q.E.D. 

The next Lemma rules out any mass point after time 0 but before either player 
moves with probability 1. 

LEMMA2. For t 6 (0, I), lim, G,(v) < 1 implies q,(t) = 0. 

PROOF. Suppose, for some t E (0, I), that q,(t) > 0. Then, for any E > 0, there 
is an  (arbitrarily small) 6 > 0 such that (i) Lp(t - 6) - Lp(t + 6) < E, and 
(ii) q,(t + 6) = 0 with G,(t + 6) - G,(t - 6) < q,(t) + E .  It then follows from As- 
sumptions A1 and A2 that, for E and 6 chosen sufficiently small, 

= CFp(t)- Sp(t)lq,(t) + 4 4  + o(&)> 0. 

Similarly, for t. E (t - d, t), 

Consequently, player will never move in the interval (t - 6, t]. This implies that 
G,(r - 6) = Gp(t) Then, if lim,,., Go(") < 1, Lemma 1 implies that G,(t - 6) = 

G,(t), contradicting the hypothesis that q,(t) > 0. Q.E.D. 

If G, is strictly increasing over some interval, then we may use the fact that 
player r must be indifferent to moving at time within the interval to explicitly 
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characterize the equilibrium strategy o f  player P over this interval in terms o f  the 
return functions Laand F,.  

LEMMA3. S~ippose G, is strictly increasilzg ouer the intervcll [ t o ,  t , ] .  Then,for 
to > 0 arlcl t E ( t o .  t,), G,(t) < 1 implies 

PROOF.Suppose that G, is  strictly increasing over the interval [ t o ,  t , ] .  Then, 
since G,(t) < 1 for t < t,, it follows from Lemma 2 that GI, is  continuous on 
(0, t , ) .  Therefore. for any t E [ t o ,  t ,) .  

Since Gpand L, are both monotonic and continuous on [ t o ,  t ] ,  we may apply the 
formula for integration by parts (Rudin 1964, p. 122) to obtain 

Substituting (5.3) into (5.2) and rearranging terms then yields, for all t E [ t o ,  t ,) ,  

But, since [L,(r>) - F,(c)][l - G,)(v)]< 0 for all t*E [ t o ,  t ] ,  equation (5.4) implies 
that 

Employing a change o f  variable (Rudin 1964, p. 122-124), we may then apply the 
fundamental theorem o f  calculus to obtain: 

Taking antilogs and rearranging terms then yields equation (5.1). Q.E.D. 

Note that, i f  L, i s  continuously differentiable, equation (5.1) is  s imply  the 
solution to the differential equation 

\vith initial condition Gp(to). In this case, Gp has a continuous density function g, 
over the interval ( t o ,  t ,). 

W e  establish next that i f  neither player moves with probability 1 at time 0, then 
the game cannot end with certainty until time 1 .  
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LEMMA4. St~pposeG,(O) < 1 .  Then G,(O) < 1 implies Gp(t)< 1joy t < 1.  

PROOF.Let t^ = sup ( t  2 0 :  G,(t) < 1 for a = a, b )  be the earliest time by 
which one of the players plans to move with certainty. The lemma is equivalent 
to the requirement that t^ i(0, 1 ) .  Suppose 0 < t^ < 1. 

We will show first that the strategy of a t  least one of the players must have a 
mass point at time f. Suppose not. Then, for some player P,  GI, is strictly increas- 
ing over an interval ( t ' ,  f i  and limrT, Gp(t)= 1. Then, for any t E (t ' ,  8,Lemma 3 
combined with Assumption A2 implies that G, is strictly increasing over ( t ' ,  t).  
Combining Lemma 3 with Assumption A2 again. we then obtain that limrTi 
G,(t) = 1 - [ l  - G,(t')]l,,(t', 9 < 1. A contradiction. 

But, if L ~ ~ ( : )> 0, then Lemma 2 implies that lim,., G,(t) = 1. The definition of t^ 
then implies that G, is strictly increasing over some interval ( t ' ,  i ) .  I t  then follows 
from Assumption A2 and Lemma 3.3 that limtAi G,(t) < 1. This contradiction 
proves the lemma. Q.E.D. 

Define 

t* = sup ( t  2 0 :  G, is strictly increasing on 10, t )  for x = a, b )  

to be the beginning of the first interval during which one of the players moves 
with probability 0. Combining Lemmata 1 and 4, we can show that, unless one of 
the players moves with probability 1 at  time 0, neither player ever moves in the 
interval ( t* ,  1). 

LEMMA5. Sclppose G,(O) < 1 .  Then 

(1) Gp(f)= 1 - [ I  - t),for 0 5 t < t * ,  ~ l n d  L ~ ~ ( O ) ] I ~ ( O ,  
(ii) G,(t) = G,(t*),for. t* 4 t < 1. 

PROOF.Suppose that G,(O) < 1. Then Lemma 3 and right-continuity of GI, 
imply that Gll(t)= 1 - [ l  cia(0)]Ip(O, t )  for 0 5 t < t * .  Therefore, the lemma will -

be proved if we can establish part (ii). Suppose qlJ(0)< 1 and t* < 1. Then Lemma 
4 implies that G,(t*) < 1 .  Let 

Since G,,(t*) < 1, it follows that t' I 1. We need to show that t' = 1. 
Suppose first that t' = t * .  Then the definition of t* implies that, for some 

t" > t ' ,  G,(tl') = G,(t*). Since G,(t*) < 1, it then follows from Lemma 1 that 
GP(t3')= G,(t*), contradicting our assumption that t' = t * .  

Suppose next that t* < t' < 1 .  Then, since Lemma 4 implies that G,(t1)< 1, it 
follows from Lemma 2 that Gp(t* )= Gp(t')< 1. But then Lemma 1 implies that, 
for some 6 > 0, G,(t*) = G,(t' + 6) < 1. Applying Lelnma 1 again then yields 
GB(t*)= GIJ(t1+ 6),contradicting the definition oft ' .  Q.E.D. 

Lemma 5 implies that the support of the equilibrium strategies is composed of 
at most an interval 10. t * ]  and jl}. Furthermore, any differences among the 
equilibrium strategies of player P must occur in the values of either qp(0)or t * .  
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5.1. Equilibriuin Restrictions or1 the Strategies at Tirne 0. Next we establish 
the restrictions imposed on the equilibrium strategies at time 0. They are based 
on the argument behind Lemma 2 which, at time 0, implies only that at most one 
player can move with positive probability. 

PROOF. Suppose that q,(O) > 0. Then, for any E > 0, there is an (arbitrarily 
small) 6 > 0 such that ( i )  Lp(0)- Lp(6)< E ,  and (ii) q,(6) = 0 with G,(6) - G,(O) < 
c. It then follows from Assumptions A1 and A2 that, for E and 6 chosen suf- 
ficiently small, 

+ CL,j(S)- Lp(O)lC1 - G,(6)1 

= CFp(0)- sp(O)lq,(o)+ o(&)+ O ( E )  > 0 

which implies that qp(0) = 0. Q.E.D. 

Restrictions on the Value o f  t*. 
the equilibrium restrictions implied by the value o f  t*. These are determined by 
comparing the payoKto a player from moving at or before time t* with his payoff 
from ivaiting until time 1. Given Assumption A3, there are two cases to consider 
as determined by the value o f t * .  

5.2. E~juilibi~i~rnz In this section, we consider 

( i )  q,(O) = 0 unrl qp(0) < 1 inlplies L,(O) <_ S,(l). 
( i i )  q,(O) = 1 implies either L,(O) 2 S,(1) or L,(O) 2 F,(t),for some t E [0, 1 ) .  

PROOF. Suppose t* = 0. 

( i )  I f  q,(O) = 0, then it follows from Lemma 5 that q,(l) = 1. Therefore, G, i s  
an optimal response only i f  

0 5 P,(1, Gp) - limcl0 P,(t, Gp) = qp(l)[S,( l )- L,(0)1. 

But i f  qp(0)< 1 ,  then Lemma 5 implies that qp( l )  = 1 - qp(0)> 0 which in 
turn implies that S,(1) 2 L,(O). 
( i i )  I f  L,(O) < S,(1) and L,(O) < F,(t) for all t E 10, 1 ) .  Then Assumption A2 
implies that 

Consequently, q,(0) > 0 cannot be an optimal response. Q.E.D. 
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" I f  L<,(O)2 F J r )  for borne t 5 10, 1). 

I f  Lh(0)2 F l i t ) for some r 5 [O. 1 )  


The ilnplications o f  Lemlna 7 are summarized in Table 1 .  Typical elements 
represent (q,(O). (1,,(0)).The value o f  s is any number in the interval [0, 11. 

W h e n  r* > 0. there is an additional restriction to consider besides the tradeoff 
between moving at time t* and waiting until time 1. It must also be possible to 
construct a strategy \vhich makes the other player indifferent between moving at 
any time near 0. This requires that the "integral" condition at time 0 be satisfied. 
Recall that Ip(O, 0 )  = l i m t I , Ip(O, t). 

z 8. =L F ~ I M  Suppose 0 < t* < 1 .  The11 I p ( O ,  0 )  1 crnd L,(t*) = S,(l). 

PROOF. The requirement that I,(O, 0 )  = 1 follows from Lemma 5 and the 
requirement that G, be right-cot~tinuous. T o  establish that L,(t*) = 0. note that 
Lemmata 4 and 5 imply that q,(l) > 0. Therefore,G, is an optimal response only 
i f  

But since Lelllmata 4 and 5 also imply that q p ( l )> 0, it follows that L,(t*) = 0. 
Q.E.D. 

Recall that I p ( l .  1 )  = lim,., Ip(t ,  1). I f  t* = 1, and l p ( l .1 )  = 0. then Lemma 5 
implies that player P moves with probability 1 before time 1 .  In this case, the 
value o f  S,(1) is irrelevant. Conseque~ltly, when t* = 1 ,  there are no additional 
restrictions at time t* unless [ , ] ( I ,  1 )  > 0 for some player P. 

PROOF. The  proof o f  part ( i )  follows again from Lemma 5 and the requirment 
that G ,  be right-continuous. T o  establish (ii). note that G, is an optimal response 
only i f  

Lemma 5 implies that q,)( l)> 0 whenever I,,(l. 1 )  > 0. Therefore,(5.6)implies that 
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L,(1) 2 S,(l). Furthermore, if 1,(1, 1) > 0, then it again follows from Lemma 5 
that q,(l) > 0, in which case equation (5.5) must be satisfied for t* = 1. Q.E.D. 

5.3. Proof of Theorems. Using the restrictions derived in Lemmata 1 to 9, 
we can now prove the theorems stated in Sections 3.1 and 3.2. 

PROOFOF THEOREM The necessity of these conditions follow from Lemmata 1. 
1 and 7. All that remains is to show that they are sufficient. 

(i) If L,(0) 2 F,(t) for some t E [0, I), then choose the strategies so that 
q,(0) = 1 and q,(t) = 1. Then, for any v E (0, 11, 

Pp(u, G,) - Pp(O, G,) = [Fp(O) - Sp(0)l> 0 


which implies that Gp is an optimal response. And 


CL,(j) - L,(O)l I0 f o r j < t  

p,(j, Gp) - P,(O, Go) = [S,(t) - L,(O)l < [F,(t) - L,(O)] I0 for j = t 

CF,(t) - L,(O)l 0 f o r j > t  

which implies that G, is an optimal response. 
If L,(0) 2 S,(l), then a similar argument establishes that q,(O) = 1 and 

qp(t)= 1 form a pair of best responses. 
(ii) If L,(O) IS,(1) and q,(l) = 1 for cr = a, b, then, for any t < 1, 

which implies that q,(l) = 1 is an optimal response. Q.E.D. 

PROOFOF THEOREM The necessity of Condition (a) follows from Lemmata 2. 
8(i) and 9(i). The necessity of Condition (b) follows from Parts (ii) of Lemmata 8 
and 9. The sufficiency of these conditions then follows upon verifying that one of 
the strategy pairs defined in Theorem 3 are equilibria. Q.E.D. 

PROOFOF THEOREM3. The necessity of Condition (a) follows from Lemma 6. 
The necessity of Condition (b) follows from Parts (ii) of Lemmata 8 and 9. The 
sufficiency of these conditions then follow upon verifying that one of the strategy 
pairs defined in Theorem 3 are equilibria. Q.E.D. 

Hendricks and Wilson (1985a, 1985b) have studied the equilibrium properties 
of Wars of Attrition in discrete time and investigated the relation between the 
equilibria of these games to the equilibria of the continuous time analogues. In 
this paper, we confine ourselves to some remarks about the differences between 
the two formulations as they pertain to our characterization theorems. 

In both formulations, the same degenerate equilibrium outcomes obtain under 
roughly the same conditions, although as noted in Section 3.3, the number of 
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subgame perfect equilibria tends to be much larger when time is continuous. 
Moreover, when the horizon is infinite, the class of nondegenerate equilibria in 
the continuous time model essentially coincides with the discrete time model. In 
both cases, there is an  equilibrium corresponding to any initial condition in 
which only one of the players moves with positive probability at  time 0. 

When the horizon is finite, however, the set of nondegenerate equilibria may 
diverge substantially. First, in discrete time, there is generally a t  most one nonde- 
generate equilibrium, corresponding to the continuous time equilibrium in which 
neither player moves with positive probability a t  time 0. In  contrast, when time is 
continuous, the existence of a single nondegenerate equilibrium implies the exis- 
tence of a continuum of nondegenerate equlibria.12 

Second, there is always an  equilibrium in discrete time whenever the terminal 
return lies below the return to leading at  any time for both players. In contrast, 
there is no degenerate equilibrium in continuous time when the terminal return 
lies strictly below the return to leading as time approaches the terminal date. This 
failure of upper semi-continuity in the equilibrium correspondence is the result of 
the fact that the payoffs are not continuous in the norm topology on the space of 
distribution strategies. 

These differences in the set of equilibria are reflected in the rich local structure 
of the equilibria in discrete time games which is totally lacking in the continuous 
time analogues. This local structure is particularly sensitive to the treatment of 
ties, which, in continuous time, occur with probability 0. We also note that there 
is no analogue to the integral conditions at  time 0 in the discrete time game. 

Stute University of New York, U.S.A.  

Bell Conznzunications Research, U.S.A.  
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